

Multipliers

Coach Burnett AP Macroeconomics

1

Disposable Income

- This is also known as your:
 - Net Income
 - Paycheck
 - After tax income

2

Marginal Propensity to Consume (MPC)

- * The fraction of any change in disposable income that is consumed.
- ♠ MPC = Change in Consumption

Change in Disposable Income

 $MPC = \Delta C /_{\Delta DI}$

3

Marginal Propensity to Save (MPS)

- The fraction of any change in disposable income that is saved.
- ♠ MPC = Change in Saving

Change in Disposable Income

 $MPC = \Delta S /_{\Delta DI}$

-		
-		
-		
-		
-		
-		
-		
=		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
- - -		
-		
- - -		
- - - -		
-		
-		
-		

Marginal Propensities	
♠ MPC + MPS = 1	
$\therefore MPC = 1 - MPS$	
$\therefore MPS = 1 - MPC$	
*Remember, people do two things with their	
disposable income, <u>consume</u> or <u>save</u> !	
	5
The Spending Multiplier Effect	
An initial change in spending (C, I _G , G,	
X_N) causes a larger change in aggregate spending, or Aggregate Demand (AD).	
Multiplier = Change in AD	
Change in Spending	
$ Multiplier = \frac{\Delta AD}{\Delta C, I_C, G, \text{ or } X_N} $	
1	6
The Spending Multiplier Effect	
of ending	
• Why does this happen?	
Expenditures and income flow	
continuously which sets off a spending	
increase in the economy.	
	7
	J. '
The Spending Multiplier Effect	
♠ Ex. If the government increases	
infrastructure spending by \$10 Billion, then	
contractors vivil him and mary more vivarious	1
contractors will hire and pay more workers,	
which will increase aggregate spending by more than the original \$10 Billion.	

Calculating the Tax Multiplier The Spending Multiplier can be calculated from the MPC or the MPS. $Multiplier = \frac{1}{1-MPC}$ or $\frac{1}{MPS}$ Multipliers are (+) when there is an increase in spending and (-) when there is a decrease. 9 Calculating the Tax Multiplier *Ex. If the government decides to increase taxes by \$500 Billion, then disposable income will fall, which will decrease short-run aggregate supply by more than the original \$500 Billion. 10 MPS, MPC, & Multipliers . When the government taxes, the multiplier works in reverse Because now money is leaving the circular flow * Tax Multiplier (note: it's NEGATIVE) = -MPC/_{1-MPC} or -MPC/_{MPS} • If there is a tax <u>CUT</u>, then the multiplier is +, because there is now more money in the circular flow. 11 MPS, MPC, & Multipliers

- Ex. Assume U.S. citizens spend 95¢ for every extra \$1 they earn. Further assume that the real interest rate (t%) decreases, causing a \$100 billion increase in gross private investment. Calculate the effect of a \$50 billion increase in I_G on U.S. Aggregate Demand (AD).
 - Step 1: Calculate the MPC and MPS
 - MPC = $^{\Delta C}/_{\Delta DI} = .95/_1 = .95$
 - MPS = 1 MPC = <u>.05</u>
 - $\,\,$ Step 2: Determine which multiplier to use, and whether it's + or -
 - \bullet The problem mentions an increase in Δ I_{G} .: use a (+) spending multiplier
 - Step 3: Calculate the Spending and/or Tax Multiplier
 - $^{1}/_{MPS} = ^{1}/_{.05} = 20$
 - Step 4: Calculate the Change in AD
 - • (Δ C, $I_{G'}$ G, or X_N) * Spending Multiplier
 - (\$100 billion ΔI_G) * (20) = \$2000 billion ΔAD = AKA = \$2 trillion ΔAD

MPS, MPC, & Multipliers

- Ex. Assume France raises taxes on its citizens by ε 500 billion . Furthermore, assume that the French save 25% of the change in their disposable income. Calculate the effect the ε 500 billion change in taxes on the French economy
 - Step 1: Calculate the MPC and MPS
 - MPS = 25%(given in the problem) = $\underline{.25}$
 - MPC = 1 MPS = 1 .25 = .25
 - Step 2: Determine which multiplier to use, and whether it's + or -
 - The problem mentions an increase in T.: use (-) tax multiplier
 - Step 3: Calculate the Spending and/or <u>Tax</u> Multiplier
 - -MPC/_{MPS} = -.75/_{.25} = <u>-.3</u>
 - Step 4: Calculate the Change in AD
 - (Δ Tax) * Tax Multiplier
 - (€500 billion ∆ T) * (-3) = <u>-€1500 billion ∆ in AD = AKA = -€1.5 trillion ∆ in AD</u>

13

MPS, MPC, & Multipliers

- its spending by £50 billion and in order to maintain a balanced budget simultaneously increases taxes by £50 billion.

 Calculate the effect the £50 billion change in government spending and £50 billion change in taxes on British Aggregate
 - Step 1: Calculate the MPC and MPS
 - MPC = 4/₅ (given in the problem) = .80
 MPS = 1 MPC = 1 .80 = .20
 - Step 2: Determine which multiplier to use, and whether it's + or -

 - Step 3: Calculate the Spending and Tax Multipliers
 - Spending Multiplier = 1/_{MPS} = 1/₂₀ = 5
 Tax Multiplier = 3MPC/_{MPS} = -80/₂₀ = 4

 - Step 4: Calculate the Change in AD

 [Δ G * Spending Multiplier] + [Δ T * Tax Multiplier]

 - [(£50 billion \triangle G) * 5] + [(£50 billion \triangle T) * -4] [£250 billion] + [-£200 billion] = £50 billion \triangle AD

14

The Balanced Budget Multipler

- That last problem was a pain, huh?
- * Remember when Government Spending increases are matched with an equal size increase in taxes, that the change ends up being = to the change in Government spending.
- Why?

$$^{1}/_{MPS}$$
 + $^{-MPC}/_{MPS}$ = $^{1-MPC}/_{MPS}$ = $^{MPS}/_{MPS}$ = 1

 Φ The balanced budget multiplier always = 1

15

Summary

- $_{\Phi}$ An initial change in spending (C, I_{G} , G, X_{N}) causes a larger change in aggregate spending, or Aggregate Demand (AD).
- ♦ When the government taxes, the multiplier works in reverse because now money is leaving the circular flow.
- If Government Spending increases are matched with an equal size increase in taxes, that the change ends up being = to the change in Government spending.

$$\frac{1}{MPS} + \frac{-MPC}{MPS} = \frac{1 - MPC}{MPS} = \frac{MPS}{MPS} = 1$$

16